Skip to main content
Log in

Determination of the radiation dose due to radon ingestion and inhalation

  • Original Paper
  • Published:
International Journal of Environmental Science and Technology Aims and scope Submit manuscript

Abstract

The distribution of radon in ground and surface water samples in Sankey Tank and Mallathahalli Lake areas was determined using Durridge RAD-7 analyzer with RAD H2O accessory. The radiation dose received by an individual falling under different age groups (viz., 3 months; 1, 5, 10, 15 years and adult) depending upon their average annual water consumption rate was attempted. The mean radon activity in surface water of Sankey Tank and Mallathahalli Lake was 7.24 ± 1.48 and 11.43 ± 1.11 Bq/L, respectively. The average radon activities ranged from 11.6 ± 1.7 to 381.2 ± 2.0 Bq/L and 1.50 ± 0.83 to 18.9 ± 1.59 Bq/L, respectively, in 12 groundwater samples each around Sankey Tank and Mallathahalli Lake areas. Majority of the measured groundwater samples (viz., 100 % in Sankey Tank area and 75 % in Mallathahalli Lake area) showed mean radon values above the EPA’s maximum contaminant level of 11.1 Bq/L and only 66.67 % of samples in Sankey Tank area showed radon above the WHO and EU’s reference level of 100 Bq/L. The overall radiation dose due to radon emanating from water in the study area was increasing with increase in age and water consumption rates, but significantly lower than UNSCEAR and WHO recommended limit of 1 mSv/year except for few groundwater samples in Sankey Tank area (i.e., 0.92, 0.99 and 1.39 mSv/year). The radiation dose rate received by bronchial epithelium via inhalation was very high compared to that by stomach walls via ingestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali N, Khan EU, Akhter P, Khan F, Waheed A (2010) Estimation of mean annual effective dose through radon concentration in the water and indoor air of Islamabad and Murree. Radiat Prot Dosimetry 141(2):183–191

    Article  CAS  Google Scholar 

  • Al-Kazwini AT, Hasan MA (2003) Radon concentration in Jordanian drinking water and hot springs. J Radiol Prot 23:439–448

    Article  CAS  Google Scholar 

  • Arora V, Bajwa BS, Singh S (2011) Measurements of radon concentrations in ground water samples of tectonically active areas of Himachal Pradesh, North West Himalayas, India. Radiat Prot Environ 34:50–54

    Google Scholar 

  • Barnett JM, Holbert KE, Stewart BD, Hood WK (1995) Lung dose estimates from 222Rn in Arizona groundwater based on Liquid Scintillation measurements. Health Phys 68:699–703

    Article  CAS  Google Scholar 

  • Binesh A, Mohammadi S, Mowlavi AA, Parvaresh P (2010) Evaluation of the radiation dose from radon ingestion and inhalation in drinking water. Int J Water Resour Environ Eng 2(7):174–178

    Google Scholar 

  • Boice JD, Mumma M, Schweitzer S, Blot WJ (2003) Cancer mortality in a Texas county with prior uranium mining and milling activities, 1950–2001. J Radiol Prot 23(3):247–262

    Article  Google Scholar 

  • Bourai AA, Gusain GS, Rautela BS, Joshi V, Prasad G, Ramola RC (2012) Variations in radon concentration in groundwater of Kumaon Himalaya, India. Radiat Prot Dosimetry. doi:10.1093/rpd/ncs186

    Google Scholar 

  • Cevik U, Damla N, Karahan G, Celebi N, Kobya AI (2006) Natural radioactivity in tap waters of eastern black sea region of Turkey. Radiat Prot Dosimetry 118:88–92

    Article  CAS  Google Scholar 

  • Chandrashekara MS, Veda SM, Paramesh L (2012) Studies on radiation dose due to radioactive elements present in ground water and soil samples around Mysore City, India. Radiat Prot Dosimetry 149(3):315–320. doi:10.1093/rpd/ncr231

    Article  CAS  Google Scholar 

  • Chen Jing (2010) Doses to children from intakes by ingestion. Radiat Prot Dosimetry 142(1):46–50

    Article  CAS  Google Scholar 

  • Choubey VM, Ramola RC (1997) Correlation between geology and radon levels in ground water, soil and indoor air in Bhilangana Valley, Garhwal Himalaya, India. J Environ Geol 32:258–262

    Article  CAS  Google Scholar 

  • Choubey VM, Ramola RC, Sharma KK (1994) Soil Gas and Indoor radon studies in Doon Valley, India. Nucl Geophys 8:49–54

    CAS  Google Scholar 

  • Choubey VM, Ramachandran TV, Negi MS, Ramola RC (2000) Calibration of radon emanometer. Ind J Environ Prot 20:329–331

    CAS  Google Scholar 

  • Duenas C, Fernandez MC, Carretero J, Liger E, Canete S (1999) 226Ra and 222Rn concentrations and doses in bottled waters in Spain. J Environ Radioact 45:283–290

    Article  CAS  Google Scholar 

  • Durridge Company Inc (2009) RAD7 RAD H2O—radon in water accessory owner’s manual. [http://www.durridge.com/documentation/RADH2OManual.pdf]

  • Enderle GJ, Friedrich K (1995) East-German uranium miners (Wismut)—exposure conditions and health consequences. Stem Cells 13(Suppl. 1):78–89

    Google Scholar 

  • EU (1998) European Union Commission directive of defining requirements for the parameters for radioactivity for monitoring the quality of water for the Council Directive 98/83 of 3 November 1998 on the quality of water intended for human consumption, Draft v3.0 29/11/2005

  • EU (2001a) European Union Commission Recommendation of 20 December 2001 on the protection of the public against exposure to radon in drinking water, 2001/982/Euratom (notified under document number C(2001) 4580)(http://eurpa.eu.int/comm/energy/nuclear/radioprotection/ doc.legislation/019280_en.pdf)

  • EU (2001b) European Union Commission Recommendation on the protection of the public against exposure to radon in drinking water supplies. Office J Eur Community L 344:85–88

    Google Scholar 

  • Folger PF, Nyberg P, Wanty RB, Poeter E (1994) Relationship between 222Rn dissolved in groundwater supplies and indoor 222Rn concentrations in some Colorado Front Range houses. Health Phys 67:244–252

    Article  Google Scholar 

  • Gillmore GK, Grattan J, Pyatt FB, Phillips PS, Pearce G (2002) Radon, water and abandoned metalliferous mines in the UK: Environmental and Human Health implications. In: Merkel BJ, Planer-Friedrich B, Wolkersdorfer (eds) Ch.: Uranium in the aquatic environment, pp 65–76

  • Godish T (2001) Indoor environment quality. CRC Press LLC, Boca Raton

    Google Scholar 

  • Gruber V, Maringer FJ, Landstetter C (2009) Radon and other natural radionuclides in drinking water in Austria; measurement and assessment. Appl Radiat Isot 67:913–917

    Article  CAS  Google Scholar 

  • HO W (2008) World Health Organisation—Guidelines for drinking-water quality, vol 1. World Health Organisation Publication, New York, pp 197–209

    Google Scholar 

  • Hunse TM, Najeeb KMd, Rajarajan K, Muthukkannan M (2010) Presence of radon in groundwater in parts of Bangalore. J Geol Soc India 75:704–708

    Article  CAS  Google Scholar 

  • IAEA (1996) International Atomic Energy Agency—international basic safety standards for protection against ionizing radiation and for the safety of radiation sources. Vienna, Safety Series-115

  • ICRP (1994) International Commission on Radiological Protection—Protection against 222Rn at home and at work. Pergamon Press, ICRP Publication No. 65, Oxford

    Google Scholar 

  • ICRP (1996) International Commission on Radiological Protection—Age-dependent doses to members of the public from intake of radionuclides: part 5 compilation of ingestion and inhalation dose coefficients. ICRP Publication 72. Ann ICRP 26(1)

  • Kearfott KJ (1989) Preliminary experiences with 222Rn gas Arizona homes. Health Phys 56:169–179

    Article  CAS  Google Scholar 

  • Kendal GM, Smith TJ (2002) Dose to organs and tissues from radon and its decay products. J Radiol Prot 22:389–406

    Article  Google Scholar 

  • Khan AJ (2000) A study of indoor radon levels in Indian dwellings, influencing factors and lung cancer risks. Radiat Meas 32:87–92

    Article  CAS  Google Scholar 

  • Khan F, Ali N, Khan EU, Khattak NU, Khan K (2010) Radon monitoring in water sources of Balakot and Mansehra cities lying on a geological fault line. Radiat Prot Dosimetry 138(2):174–179

    Article  CAS  Google Scholar 

  • Khattak NU, Khan MA, Shah MT, Javed MW (2011) Radon concentration in drinking water sources of the Main Campus of the University of Peshawar and surrounding areas, Khyber Pakhtunkhwa, Pakistan. J Radioanal Nucl Chem 290:493–505. doi:10.1007/s10967-011-1297-2

    Article  CAS  Google Scholar 

  • Kusyk M, Ciesla KM (2002) Radon levels in household waters in southern Poland. Nukleonika 47:65–68

    CAS  Google Scholar 

  • Lee JM, Kim G (2006) A simple and rapid method for analyzing radon in coastal and ground waters using a radon-in-air monitor. J Environ Radioact 89:219–228

    Article  CAS  Google Scholar 

  • Li X, Zheng B, Wang Y, Wang X (2006) A study of daily and seasonal variations of radon concentrations in underground buildings. J Environ Radioact 87:101–106

    Article  CAS  Google Scholar 

  • Mose DG, Mushrush GW, Chrosniak C (1990) Indoor radon and well water radon in Virginia and Maryland. Arch Environ Contam Toxicol 19(6):952–956

    Article  CAS  Google Scholar 

  • Mowlavi AA, Fornasier MR, de Denaro M, Binesh A (2012) Indoor radon measurement and effective dose assessment of 150 apartments in Mashhad, Iran. Environ Monit Assess 184:1085–1088. doi:10.1007/s10661-011-2022-x

    Article  CAS  Google Scholar 

  • Muhammad BG, Jaafar MS, Azhar AR, Akpa TC (2012) Measurements of 222Rn activity concentration in domestic water sources in Penang, Northern Peninsular Malaysia. Radiat Prot Dosimetry 149(3):340–346. doi:10.1093/rpd/ncr230

    Article  CAS  Google Scholar 

  • Németh Cs, Tokonami S, Ishikawa T, Takahashi H, Zhuo W, Shimo M (2006) Measurements of radon, thoron and their progeny in Gifu prefecture, Japan. J Radioanal Nuclear Chem 267(1):9–12

    Article  Google Scholar 

  • Nikolov J, Todorovic N, Forkapic S, Bikit I, Mrdja D (2011) Radon in drinking water in Novi Sad. World Acad Sci Eng Technol 76:307–310

    Google Scholar 

  • Oner F, Yalim HA, Akkurt A, Orbay M (2009) The measurements of radon concentrations in drinking water and the Yesilirmak River water in the area of Amasya in Turkey. Radiat Prot Dosimetry 133(4):223–226

    Article  CAS  Google Scholar 

  • Paulus LR (1995) An evaluation of radon concentrations in ground water from wells and springs in the State of Idaho. MS thesis, Idaho State University, Pocatello, Idaho

  • Porcelli D, Swarzenski PW (2003) The behavior of U- and Th-series nuclides in groundwater. Reviews in Mineralogy and Geochemistry. Geochem Soc Mineral Soc Am 52:317–356

    Article  CAS  Google Scholar 

  • Pourhabib Z, Binesh A, Arabshahi H (2011) Evaluation of Radiation dose from radon ingestion and inhalation in water supplies of Sadatshahr and Javaherdeh in Iran. Environ Res J 5(4):170–172. doi:10.3923/erj.2011.170.172

    Article  Google Scholar 

  • Prichard HM (1987) The transfer of radon from domestic water to indoor air. J AWWA 79(4):159–161

    CAS  Google Scholar 

  • Ramola RC, Singh S, Virk HS (1988) Radon studies over main Boundary Thrust near Dehradun India. Nucl Tracks Radiat Meas 15:617–619

    Article  CAS  Google Scholar 

  • Ramola RC, Sandhu AS, Singh M, Virk HS (1989) Geochemical exploration of uranium using radon measurement techniques. Nucl Geophy 3:57–69

    CAS  Google Scholar 

  • Ramola RC, Singh M, Sandhu AS, Singh S, Virk HS (1990) The use of radon as an earthquake precursor. Nucl Geophys 4:275–287

    Google Scholar 

  • Ramola RC, Choubey VM, Prasad Y, Prasad G, Bartarya SK (2006) Variation in radon concentration and terrestrial gamma radiation dose rates in relation to the lithology in southern part of Kumaon Himalaya, India. Radiat Meas 41:714–720

    Article  CAS  Google Scholar 

  • Rusconi R, Forte M, Badalamenti P, Bellinzona S, Gallini R, Maltese S, Romeo C, Sgorbati G (2004) The monitoring of tap waters in Milano: planning, methods and results. Radiat Prot Dosimetry 111(4):373–376. doi:10.1093/rpd/nch057

    Article  CAS  Google Scholar 

  • Savidou A, Sideris G, Zouridakis N (2001) Radon in public water supplies in Migdonia Basin, central Macedonia, northern Greece. Health Phys 80:170–174

    Article  CAS  Google Scholar 

  • Sohrabi M (1998) The state of the art on worldwide studies in some environments with elevated naturally occurring radioactive materials (NORM). Appl Radiat Isot 49:169–188

    Article  CAS  Google Scholar 

  • Somashekar RK, Ravikumar P (2010) Radon concentration in groundwater of Varahi and Markandeya river basins, Karnataka State, India. J Radioanal Nucl Chem 285:343–351. doi:10.1007/s10967-010-0573-x

    Article  CAS  Google Scholar 

  • Somlai K, Tokonami S, Ishikawa T, Vancsura P, Gáspár M, Jobbágy V, Somlai J, Kovács T (2007) 222Rn concentration of water in the Balaton Highland and in the southern part of Hungary, and the assessment of the resulting dose. Radiat Meas 42:491–495

    Article  CAS  Google Scholar 

  • Stringer C, Burnett WC (2004) Sample bottle design improvements for radon emanation analysis of natural waters. Health Phys 87:642–646

    CAS  Google Scholar 

  • Tanner AB (1986) Geological factors that influence radon availability. Indoor radon levels, Publ. SP-54, Air Pollution control Assoc., Pittsburg, PA, pp 1–12

  • Tayyeb ZA, Kinsara AR, Farid SM (1998) A study on the radon concentrations in water in Jeddah (Saudi Arabia) and the associated health effects. J Environ Radioact 38(1):97–104

    Article  CAS  Google Scholar 

  • UNSCEAR (1993) United Nations Scientific Committee on the effects of atomic radiation—sources and effects of ionizing radiation, 1993 report to the General Assembly, with scientific annexes. United Nation Sales Publication E.94.IX.2. United Nations, New York

  • UNSCEAR (2000) United Nations Scientific Committee on the Effects of Atomic Radiation—Exposures from natural radiation sources, January 2000 draft report. United Nations, New York

    Google Scholar 

  • USEPA (1991) United States Environmental Protection Agency—National primary drinking water regulations for radionuclides: notice of proposed rule-making. Fed Reg 56:33050–33127

    Google Scholar 

  • Vitz E (1991) Toward a standard method for determining waterborne radon. Health Phys 60:817–829

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1993) Guidelines for drinking water quality, vol 1, 2nd edn. WHO Recommendations, Geneva

  • WHO (2004) World Health Organisation—Guidelines for drinking water quality, 2nd edn. WHO, Geneva

    Google Scholar 

  • Wong CS, Chin Y, Gschwend PM (1992) Sorption of radon-222 to natural sediments. Geochim Cosmochim Acta 56:3923–3932

    Article  CAS  Google Scholar 

  • Xinwei L (2006) Analysis of radon concentration in drinking water in Baoji (China) and the associated health effects. Radiat Prot Dosimetry 121(4):452–455

    Article  CAS  Google Scholar 

  • Xinwei L, Xiaolan Z (2004) Study of the radon concentrations in drinking water from three main cities of Shaanxi Province, China. Environ Geol 45:1082–1086

    Article  Google Scholar 

  • Yamada Y, Sun Q, Tokonami S, Akiba S, Zhuo W, Hou C, Zhang S, Ishikawa T, Furukawa M, Fukutsu K, Yonehara H (2006) Radon–Thoron discriminative measurements in Gansu province, China, and their implication for dose estimates. J Toxicol Environ Health Part A 69:723–734. doi:10.1080/15287390500261265

    Article  CAS  Google Scholar 

  • Yogesh PG, Choubey P, Ramola VC (2009) Geohydrological control on radon availability in groundwater. Radiat Meas 44(1):122–126

    Article  Google Scholar 

  • Yu KN, Guan ZJ, Stokes MJ, Young ECM (1994) A preliminary study on the radon concentations in water in Hong Kong and the associated health effects. Appl Radiat Isot 45:809–810

    Google Scholar 

  • Zhuo W, Iida T, Yang X (2001) Occurrence of 222Rn, 226Ra, 228Ra and U in groundwater in Fujain province. Chin J Environ Radioact 53:111–120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Board of Research in Nuclear Sciences (BRNS), Bhabha Atomic Research Centre (BARC), Government of India, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ravikumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravikumar, P., Somashekar, R.K. Determination of the radiation dose due to radon ingestion and inhalation. Int. J. Environ. Sci. Technol. 11, 493–508 (2014). https://doi.org/10.1007/s13762-013-0252-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13762-013-0252-x

Keywords

Navigation